Numrat natyrorë më të vegjël se 5 dhe të kundërtat e tyre. Numrat

Numrat e plotë- këta janë numra që përdoren gjatë numërimit të objekteve. Numrat natyrorë nuk përfshijnë:

  • Numrat negativë (për shembull -1, -2, -100).
  • Numrat thyesorë (për shembull, 1.1 ose 6/89).
  • Numri 0.

Shkruani numrat natyrorë që janë më të vegjël se 5

Do të ketë disa numra të tillë:
1, 2, 3, 4 - këta janë të gjithë numra natyrorë që janë më pak se 5. Nuk ka më numra të tillë.
Tani mbetet për të shkruar numrat që janë të kundërt me numrat natyrorë të gjetur. Të kundërta të të dhënave janë numrat që kanë shenjën e kundërt (me fjalë të tjera, janë numra të shumëzuar me -1). Në mënyrë që ne të gjejmë numrat e kundërt me numrat 1, 2, 3, 4, duhet t'i shkruajmë të gjithë këta numra me shenjën e kundërt (shumëzuar me -1). Le ta bejme:
-1, -2, -3, -4 - këta janë të gjithë numrat që janë të kundërt me numrat 1, 2, 3, 4. Le të shkruajmë përgjigjen.
Përgjigje: numrat natyrorë që janë më të vegjël se 5 janë numrat 1, 2, 3, 4;
numrat që janë të kundërt me numrat e gjetur janë numrat -1, -2, -3, -4.

E thënë thjesht, këto janë perime të gatuara në ujë sipas një recete të veçantë. Do të shqyrtoj dy përbërës fillestarë (sallatë me perime dhe ujë) dhe rezultatin e përfunduar - borscht. Gjeometrikisht, mund të mendohet si një drejtkëndësh, ku njëra anë përfaqëson marule dhe ana tjetër përfaqëson ujin. Shuma e këtyre dy anëve do të tregojë borscht. Diagonalja dhe zona e një drejtkëndëshi të tillë "borscht" janë koncepte thjesht matematikore dhe nuk përdoren kurrë në recetat e borschit.


Si shndërrohen marulja dhe uji në borscht nga pikëpamja matematikore? Si mund të bëhet trigonometrike shuma e dy segmenteve të drejtëzave? Për ta kuptuar këtë, na duhen funksione këndore lineare.


Nuk do të gjeni asgjë për funksionet këndore lineare në tekstet e matematikës. Por pa to nuk mund të ketë matematikë. Ligjet e matematikës, si ligjet e natyrës, funksionojnë pavarësisht nëse dimë për ekzistencën e tyre apo jo.

Funksionet këndore lineare janë ligje të mbledhjes. Shihni se si algjebra shndërrohet në gjeometri dhe gjeometria shndërrohet në trigonometri.

A është e mundur të bëhet pa funksione këndore lineare? Është e mundur, sepse matematikanët ende ia dalin pa to. Mashtrimi i matematikanëve është se ata gjithmonë na tregojnë vetëm për ato probleme që ata vetë dinë t'i zgjidhin dhe kurrë nuk flasin për ato probleme që nuk mund t'i zgjidhin. Shikoni. Nëse dimë rezultatin e mbledhjes dhe një termi, përdorim zbritjen për të gjetur termin tjetër. Të gjitha. Ne nuk dimë probleme të tjera dhe nuk dimë si t'i zgjidhim ato. Çfarë duhet të bëjmë nëse dimë vetëm rezultatin e mbledhjes dhe nuk i dimë të dy termat? Në këtë rast, rezultati i shtimit duhet të zbërthehet në dy terma duke përdorur funksione këndore lineare. Tjetra, ne vetë zgjedhim se cili mund të jetë një term, dhe funksionet këndore lineare tregojnë se cili duhet të jetë termi i dytë në mënyrë që rezultati i shtimit të jetë pikërisht ai që na nevojitet. Mund të ketë një numër të pafund të palëve të tilla termash. NË Jeta e përditshme Mund të bëjmë mirë pa e zbërthyer shumën; zbritja na mjafton. Por në kërkimin shkencor mbi ligjet e natyrës, zbërthimi i një shume në përbërësit e saj mund të jetë shumë i dobishëm.

Një tjetër ligj i shtimit për të cilin matematikanët nuk u pëlqen të flasin (një tjetër nga truket e tyre) kërkon që termat të kenë të njëjtat njësi matëse. Për sallatën, ujin dhe borschtin, këto mund të jenë njësi peshë, vëllim, vlerë ose njësi matëse.

Figura tregon dy nivele ndryshimi për matematikën. Niveli i parë janë dallimet në fushën e numrave, të cilat tregohen a, b, c. Kjo është ajo që bëjnë matematikanët. Niveli i dytë janë dallimet në fushën e njësive matëse, të cilat tregohen në kllapa katrore dhe tregohen me shkronjë. U. Kjo është ajo që bëjnë fizikanët. Ne mund të kuptojmë nivelin e tretë - dallimet në zonën e objekteve që përshkruhen. Objekte të ndryshme mund të kenë të njëjtin numër njësish identike matëse. Sa e rëndësishme është kjo, mund ta shohim në shembullin e trigonometrisë borscht. Nëse shtojmë nënshkrime në të njëjtin emërtim të njësisë për objekte të ndryshme, mund të themi saktësisht se çfarë sasie matematikore përshkruan një objekt të caktuar dhe si ndryshon ai me kalimin e kohës ose për shkak të veprimeve tona. Letër W Unë do ta caktoj ujin me një letër S Unë do ta caktoj sallatën me një letër B- borsch. Kështu do të duken funksionet këndore lineare për borscht.

Nëse marrim një pjesë të ujit dhe një pjesë të sallatës, së bashku do të shndërrohen në një porcion borscht. Këtu ju sugjeroj të bëni pak pushim nga borscht dhe të mbani mend fëmijërinë tuaj të largët. E mbani mend se si na mësuan t'i bashkonim lepurushat dhe rosat? Ishte e nevojshme për të gjetur se sa kafshë do të kishte. Çfarë na mësuan të bënim atëherë? Na mësuan të veçonim njësitë matëse nga numrat dhe të mbledhim numra. Po, çdo numër mund t'i shtohet çdo numri tjetër. Kjo është një rrugë e drejtpërdrejtë drejt autizmit të matematikës moderne - ne e bëjmë atë në mënyrë të pakuptueshme, çfarë, në mënyrë të pakuptueshme pse, dhe shumë keq e kuptojmë se si kjo lidhet me realitetin, për shkak të tre niveleve të ndryshimit, matematikanët veprojnë vetëm me një. Do të ishte më e saktë të mësoni se si të kaloni nga një njësi matjeje në tjetrën.

Lepurushat, rosat dhe kafshët e vogla mund të numërohen në copa. Një njësi e përbashkët matjet për objekte të ndryshme na lejojnë t'i bashkojmë ato. Ky është një version për fëmijë i problemit. Le të shohim një detyrë të ngjashme për të rriturit. Çfarë përfitoni kur shtoni lepurushë dhe para? Këtu ka dy zgjidhje të mundshme.

Opsioni i parë. Ne përcaktojmë vlerën e tregut të lepurushëve dhe e shtojmë atë në shumën e disponueshme të parave. Ne morëm vlerën totale të pasurisë sonë në terma monetarë.

Opsioni i dytë. Ju mund të shtoni numrin e lepurushave në numrin e kartëmonedhave që kemi. Ne do të marrim shumën e pasurisë së luajtshme në copa.

Siç mund ta shihni, i njëjti ligj shtesë ju lejon të merrni rezultate të ndryshme. E gjitha varet nga ajo që saktësisht duam të dimë.

Por le të kthehemi te borshi ynë. Tani mund të shohim se çfarë do të ndodhë kur kuptime të ndryshme këndi i funksioneve këndore lineare.

Këndi është zero. Kemi sallatë, por jo ujë. Ne nuk mund të gatuajmë borscht. Sasia e borscht është gjithashtu zero. Kjo nuk do të thotë aspak se zero borscht është i barabartë me zero ujë. Mund të ketë zero borscht me zero sallatë (kënd të drejtë).


Për mua personalisht, kjo është prova kryesore matematikore e faktit se . Zero nuk e ndryshon numrin kur shtohet. Kjo ndodh sepse vetë mbledhja është e pamundur nëse ka vetëm një term dhe termi i dytë mungon. Ju mund ta ndjeni këtë si të doni, por mbani mend - të gjitha operacionet matematikore me zero janë shpikur nga vetë matematikanët, kështu që hidhni logjikën tuaj dhe grumbulloni marrëzi përkufizimet e shpikura nga matematikanët: "pjestimi me zero është i pamundur", "çdo numër i shumëzuar me zero është e barabartë me zero", "përtej pikës së shpimit zero" dhe marrëzi të tjera. Mjafton të kujtoni një herë se zero nuk është numër dhe nuk do të keni më kurrë pyetje nëse zeroja është numër natyror apo jo, sepse një pyetje e tillë e humb çdo kuptim: si mund të konsiderohet numër diçka që nuk është numër. ? Është si të pyesësh se si duhet klasifikuar një ngjyrë e padukshme. Shtimi i një zero në një numër është njësoj si të pikturosh me bojë që nuk është aty. Ne tundëm një furçë të thatë dhe u thamë të gjithëve se "ne pikturuam". Por largohem pak.

Këndi është më i madh se zero, por më pak se dyzet e pesë gradë. Ne kemi shumë marule, por jo mjaftueshëm ujë. Si rezultat, ne do të marrim borscht të trashë.

Këndi është dyzet e pesë gradë. Kemi sasi të barabarta uji dhe sallate. Ky është borshi i përsosur (më falni, kuzhinierë, është thjesht matematikë).

Këndi është më i madh se dyzet e pesë gradë, por më pak se nëntëdhjetë gradë. Kemi shumë ujë dhe pak sallatë. Do të merrni borscht të lëngshëm.

Këndi i drejtë. Ne kemi ujë. Nga sallata ka mbetur vetëm kujtime, ndërsa vazhdojmë të masim këndin nga vija që dikur shënonte sallatën. Ne nuk mund të gatuajmë borscht. Sasia e borschit është zero. Në këtë rast, mbajeni dhe pini ujë derisa e keni)))

Këtu. Diçka si kjo. Këtu mund të tregoj histori të tjera që do të ishin më se të përshtatshme këtu.

Dy miq kishin aksionet e tyre në një biznes të përbashkët. Pasi vrau njërin prej tyre, gjithçka shkoi tek tjetri.

Shfaqja e matematikës në planetin tonë.

Të gjitha këto histori tregohen në gjuhën e matematikës duke përdorur funksione këndore lineare. Një herë tjetër do t'ju tregoj vendin real të këtyre funksioneve në strukturën e matematikës. Ndërkohë, le të kthehemi te trigonometria e borshtit dhe të shqyrtojmë projeksionet.

E shtunë, 26 tetor 2019

E mërkurë, 7 gusht 2019

Duke përfunduar bisedën rreth, ne duhet të marrim parasysh një grup të pafund. Çështja është se koncepti i "pafundësisë" prek matematikanët ashtu si një boa shtrëngues prek një lepur. Tmerri i dridhur i pafundësisë i privon matematikanët sens të përbashkët. Ja një shembull:

Burimi origjinal gjendet. Alfa qëndron për numrin real. Shenja e barazimit në shprehjet e mësipërme tregon se nëse shtoni një numër ose pafundësi në pafundësi, asgjë nuk do të ndryshojë, rezultati do të jetë i njëjti pafundësi. Nëse marrim si shembull grupin e pafundëm të numrave natyrorë, atëherë shembujt e konsideruar mund të përfaqësohen në këtë formë:

Për të vërtetuar qartë se kishin të drejtë, matematikanët dolën me shumë metoda të ndryshme. Personalisht, të gjitha këto metoda i shikoj si shamanë që kërcejnë me dajre. Në thelb, të gjitha përqendrohen në faktin se ose disa nga dhomat janë të pabanuara dhe të ftuar të rinj po hyjnë, ose se disa nga vizitorët janë hedhur në korridor për t'u bërë vend mysafirëve (shumë njerëzor). Unë e paraqita pikëpamjen time për vendime të tilla në formën e një tregimi fantazi për Bjonden. Ku bazohet arsyetimi im? Zhvendosja e një numri të pafund vizitorësh kërkon një kohë të pafundme. Pasi të kemi liruar dhomën e parë për një mysafir, një nga vizitorët do të ecë gjithmonë përgjatë korridorit nga dhoma e tij në tjetrën deri në fund të kohës. Sigurisht, faktori kohë mund të injorohet marrëzi, por kjo do të jetë në kategorinë "asnjë ligj nuk është shkruar për budallenjtë". Gjithçka varet nga ajo që po bëjmë: përshtatja e realitetit me teoritë matematikore ose anasjelltas.

Çfarë është një "hotel pa fund"? Një hotel infinit është një hotel që ka gjithmonë çdo numër shtretërish bosh, pavarësisht sa dhoma janë të zëna. Nëse të gjitha dhomat në korridorin e pafund "vizitor" janë të zëna, ka një korridor tjetër të pafund me dhoma "të ftuar". Do të ketë një numër të pafund korridoresh të tilla. Për më tepër, "hoteli i pafund" ka një numër të pafund katesh në një numër të pafund ndërtesash në një numër të pafund planetësh në një numër të pafund universesh të krijuar nga një numër i pafund zotash. Matematikanët nuk janë në gjendje të distancohen nga problemet banale të përditshme: ka gjithmonë vetëm një Zot-Allah-Buda, ka vetëm një hotel, ka vetëm një korridor. Pra, matematikanët po përpiqen të mashtrojnë numrat serialë të dhomave të hoteleve, duke na bindur se është e mundur të "futet në të pamundurën".

Unë do t'ju tregoj logjikën e arsyetimit tim duke përdorur shembullin e një grupi të pafund numrash natyrorë. Së pari ju duhet t'i përgjigjeni një pyetjeje shumë të thjeshtë: sa grupe numrash natyrorë ka - një apo shumë? Nuk ka përgjigje të saktë për këtë pyetje, pasi ne vetë i shpikëm numrat; numrat nuk ekzistojnë në natyrë. Po, Natyra është e shkëlqyeshme në numërim, por për këtë ajo përdor mjete të tjera matematikore që nuk janë të njohura për ne. Unë do t'ju tregoj se çfarë mendon Natyra një herë tjetër. Meqenëse ne shpikëm numrat, ne vetë do të vendosim se sa grupe numrash natyrorë ka. Le të shqyrtojmë të dyja opsionet, siç u ka hije shkencëtarëve të vërtetë.

Opsioni një. "Le të na jepet" një grup i vetëm numrash natyrorë, i cili shtrihet qetësisht në raft. Ne e marrim këtë grup nga rafti. Kaq, nuk ka mbetur asnjë numër tjetër natyror në raft dhe ku t'i çojë. Ne nuk mund të shtojmë një në këtë grup, pasi e kemi tashmë. Po sikur vërtet të dëshironi? Nuk ka problem. Mund të marrim një nga kompleti që kemi marrë tashmë dhe ta kthejmë në raft. Pas kësaj mund të marrim një nga rafti dhe ta shtojmë në atë që na ka mbetur. Si rezultat, ne do të marrim përsëri një grup të pafund numrash natyrorë. Ju mund të shkruani të gjitha manipulimet tona si kjo:

I shkrova veprimet në shënimin algjebrik dhe në notimin e teorisë së grupeve, me një listë të detajuar të elementeve të grupit. Nënshkrimi tregon se ne kemi një grup dhe të vetëm numrash natyrorë. Rezulton se bashkësia e numrave natyrorë do të mbetet e pandryshuar vetëm nëse i zbritet një dhe i shtohet e njëjta njësi.

Opsioni dy. Ne kemi shumë grupe të ndryshme të pafundme numrash natyrorë në raftin tonë. Theksoj - TË NDRYSHME, pavarësisht se praktikisht nuk dallohen. Le të marrim një nga këto grupe. Pastaj marrim njërin nga një grup tjetër numrash natyrorë dhe ia shtojmë grupit që kemi marrë tashmë. Mund të shtojmë edhe dy grupe numrash natyrorë. Kjo është ajo që marrim:

Nënshkrimet "një" dhe "dy" tregojnë se këta elementë i përkisnin grupeve të ndryshme. Po, nëse shtoni një në një grup të pafund, rezultati do të jetë gjithashtu një grup i pafund, por nuk do të jetë i njëjtë me grupin origjinal. Nëse shtoni një grup tjetër të pafund në një grup të pafund, rezultati është një grup i ri i pafund i përbërë nga elementët e dy grupeve të para.

Bashkësia e numrave natyrorë përdoret për numërim në të njëjtën mënyrë si një vizore për matje. Tani imagjinoni që i keni shtuar një centimetër vizores. Kjo do të jetë një linjë e ndryshme, jo e barabartë me atë origjinale.

Ju mund të pranoni ose të mos pranoni arsyetimin tim - kjo është puna juaj. Por nëse hasni ndonjëherë probleme matematikore, mendoni nëse po ndiqni rrugën e arsyetimit të rremë të shkelur nga brezat e matematikanëve. Në fund të fundit, studimi i matematikës, para së gjithash, formon një stereotip të qëndrueshëm të të menduarit tek ne, dhe vetëm atëherë shton aftësitë tona mendore (ose, anasjelltas, na privon nga të menduarit e lirë).

pozg.ru

E diel, 4 gusht 2019

Po përfundoja një postshkrim për një artikull rreth dhe pashë këtë tekst të mrekullueshëm në Wikipedia:

Lexojmë: "... baza e pasur teorike e matematikës së Babilonisë nuk kishte një karakter holistik dhe u reduktua në një grup teknikash të ndryshme, pa një sistem të përbashkët dhe bazë provash".

Uau! Sa të zgjuar jemi dhe sa mirë mund t'i shohim të metat e të tjerëve. A është e vështirë për ne që të shikojmë matematikën moderne në të njëjtin kontekst? Duke parafrazuar pak tekstin e mësipërm, personalisht mora sa vijon:

Baza e pasur teorike e matematikës moderne nuk është gjithëpërfshirëse në natyrë dhe është reduktuar në një grup seksionesh të ndryshme, pa një sistem të përbashkët dhe bazë provash.

Nuk do të shkoj larg për të konfirmuar fjalët e mia - ajo ka një gjuhë dhe konventa që janë të ndryshme nga gjuha dhe konventat e shumë degëve të tjera të matematikës. Të njëjtët emra në degë të ndryshme të matematikës mund të kenë kuptime të ndryshme. Unë dua t'i kushtoj një seri të tërë botimesh gabimeve më të dukshme të matematikës moderne. Shihemi se shpejti.

E shtunë, 3 gusht 2019

Si të ndajmë një grup në nënbashkësi? Për ta bërë këtë, duhet të futni një njësi të re matëse që është e pranishme në disa nga elementët e grupit të zgjedhur. Le të shohim një shembull.

Le të kemi shumë A i përbërë nga katër persona. Ky grup formohet në bazë të "njerëzve". Le t'i shënojmë elementet e këtij grupi me shkronjë A, nënshkrimi me një numër do të tregojë numrin serial të çdo personi në këtë grup. Le të prezantojmë një njësi të re matëse "gjinia" dhe ta shënojmë me shkronjë b. Meqenëse karakteristikat seksuale janë të natyrshme për të gjithë njerëzit, ne shumëzojmë çdo element të grupit A bazuar në gjini b. Vini re se grupi ynë i "njerëzve" tani është bërë një grup "njerëzësh me karakteristika gjinore". Pas kësaj ne mund t'i ndajmë karakteristikat seksuale në meshkuj bm dhe të grave bw karakteristikat seksuale. Tani mund të aplikojmë një filtër matematikor: ne zgjedhim një nga këto karakteristika seksuale, pavarësisht se cila - mashkull apo femër. Nëse një person e ka, atëherë e shumëzojmë me një, nëse nuk ka një shenjë të tillë, e shumëzojmë me zero. Dhe pastaj ne përdorim matematikën e rregullt të shkollës. Shikoni çfarë ndodhi.

Pas shumëzimit, zvogëlimit dhe rirregullimit, përfunduam me dy nëngrupe: nëngrupin e burrave Bm dhe një nëngrup femrash Bw. Matematikanë arsyetojnë afërsisht në të njëjtën mënyrë kur zbatojnë teorinë e grupeve në praktikë. Por ata nuk na tregojnë detajet, por na japin rezultatin e përfunduar - "shumë njerëz përbëhen nga një nëngrup burrash dhe një nëngrup grash". Natyrisht, mund të keni një pyetje: sa saktë është zbatuar matematika në transformimet e përshkruara më sipër? Guxoj t'ju siguroj se, në thelb, shndërrimet janë bërë në mënyrë korrekte, mjafton të njihni bazën matematikore të aritmetikës, algjebrës së Bulit dhe degëve të tjera të matematikës. Cfare eshte? Një herë tjetër do t'ju tregoj për këtë.

Për sa i përket superbashkësive, ju mund të kombinoni dy grupe në një superset duke zgjedhur njësinë matëse të pranishme në elementët e këtyre dy grupeve.

Siç mund ta shihni, njësitë e matjes dhe matematika e zakonshme e bëjnë teorinë e grupeve një relike të së kaluarës. Një shenjë se gjithçka nuk është mirë me teorinë e grupeve është se matematikanët kanë dalë me gjuhën dhe shënimin e tyre për teorinë e grupeve. Matematikanët vepruan si dikur shamanët. Vetëm shamanët dinë të zbatojnë "drejtësisht" "dijen" e tyre. Ata na mësojnë këtë "dije".

Si përfundim, dua t'ju tregoj se si manipulojnë matematikanët.

E hënë, 7 janar 2019

Në shekullin e pestë para Krishtit filozof i lashtë grek Zeno nga Elea formuloi aporiat e tij të famshme, më e famshmja prej të cilave është aporia "Akili dhe Breshka". Ja si tingëllon:

Le të themi se Akili vrapon dhjetë herë më shpejt se breshka dhe është një mijë hapa pas saj. Gjatë kohës që i duhet Akilit për të vrapuar këtë distancë, breshka do të zvarritet njëqind hapa në të njëjtin drejtim. Kur Akili vrapon njëqind hapa, breshka zvarritet edhe dhjetë hapa të tjerë, e kështu me radhë. Procesi do të vazhdojë deri në pafundësi, Akili nuk do ta arrijë kurrë breshkën.

Ky arsyetim u bë një tronditje logjike për të gjithë brezat pasardhës. Aristoteli, Diogjeni, Kanti, Hegeli, Hilberti... Të gjithë e konsideronin aporinë e Zenonit në një mënyrë apo në një tjetër. Goditja ishte aq e fortë sa " ... diskutimet vazhdojnë edhe sot e kësaj dite; komuniteti shkencor nuk ka qenë ende në gjendje të arrijë në një mendim të përbashkët mbi thelbin e paradokseve ... analiza matematikore, teoria e grupeve, qasje të reja fizike dhe filozofike u përfshinë në studimin e çështjes ; asnjëri prej tyre nuk u bë një zgjidhje e pranuar përgjithësisht e problemit..."[Wikipedia, "Aporia e Zenos". Të gjithë e kuptojnë se po mashtrohen, por askush nuk e kupton se në çfarë konsiston mashtrimi.

Nga pikëpamja matematikore, Zeno në aporinë e tij tregoi qartë kalimin nga sasia në . Ky kalim nënkupton aplikim në vend të atyre të përhershëm. Me sa kuptoj unë, aparati matematikor për përdorimin e njësive të ndryshueshme të matjes ose nuk është zhvilluar ende, ose nuk është aplikuar në aporinë e Zenoit. Zbatimi i logjikës sonë të zakonshme na çon në një kurth. Ne, për shkak të inercisë së të menduarit, aplikojmë njësi konstante të kohës në vlerën reciproke. Nga pikëpamja fizike, kjo duket sikur koha po ngadalësohet derisa të ndalojë plotësisht në momentin kur Akili kap breshkën. Nëse koha ndalon, Akili nuk mund ta kalojë më breshkën.

Nëse e kthejmë logjikën tonë të zakonshme, gjithçka bie në vend. Akili vrapon me një shpejtësi konstante. Çdo segment pasues i rrugës së tij është dhjetë herë më i shkurtër se ai i mëparshmi. Prandaj, koha e shpenzuar për tejkalimin e saj është dhjetë herë më pak se ajo e mëparshme. Nëse zbatojmë konceptin e "pafundësisë" në këtë situatë, atëherë do të ishte e saktë të thuhet "Akili do ta arrijë breshkën pafundësisht shpejt".

Si ta shmangni këtë kurth logjik? Qëndroni në njësi konstante kohore dhe mos kaloni në njësi reciproke. Në gjuhën e Zenonit duket kështu:

Në kohën që i duhen Akilit për të bërë një mijë hapa, breshka do të zvarritet njëqind hapa në të njëjtin drejtim. Gjatë intervalit tjetër kohor të barabartë me të parin, Akili do të vrapojë një mijë hapa të tjerë, dhe breshka do të zvarritet njëqind hapa. Tani Akili është tetëqind hapa përpara breshkës.

Kjo qasje përshkruan në mënyrë adekuate realitetin pa asnjë paradoks logjik. Por kjo nuk është një zgjidhje e plotë për problemin. Deklarata e Ajnshtajnit për papërmbajtshmërinë e shpejtësisë së dritës është shumë e ngjashme me aporinë e Zenonit "Akili dhe Breshka". Ne ende duhet të studiojmë, rimendojmë dhe zgjidhim këtë problem. Dhe zgjidhja duhet kërkuar jo në numër pafundësisht të madh, por në njësi matëse.

Një tjetër aporia interesante e Zenos tregon për një shigjetë fluturuese:

Një shigjetë fluturuese është e palëvizshme, pasi në çdo moment të kohës është në prehje, dhe duke qenë se është në pushim në çdo moment të kohës, ajo është gjithmonë në pushim.

Në këtë apori, paradoksi logjik kapërcehet shumë thjesht - mjafton të sqarohet se në çdo moment të kohës një shigjetë fluturuese është në pushim në pika të ndryshme të hapësirës, ​​që në fakt është lëvizje. Këtu duhet theksuar edhe një pikë tjetër. Nga një fotografi e një makine në rrugë është e pamundur të përcaktohet as fakti i lëvizjes së saj, as distanca deri në të. Për të përcaktuar nëse një makinë po lëviz, ju nevojiten dy fotografi të bëra nga e njëjta pikë në pika të ndryshme kohore, por nuk mund të përcaktoni distancën prej tyre. Për të përcaktuar distancën nga një makinë, ju nevojiten dy fotografi të marra nga pika të ndryshme të hapësirës në një moment në kohë, por prej tyre nuk mund të përcaktoni faktin e lëvizjes (natyrisht, ju duhen ende të dhëna shtesë për llogaritjet, trigonometria do t'ju ndihmojë ). Ajo që dua të tërheq vëmendjen e veçantë është se dy pika në kohë dhe dy pika në hapësirë ​​janë gjëra të ndryshme që nuk duhen ngatërruar, sepse ofrojnë mundësi të ndryshme për kërkime.
Unë do t'ju tregoj procesin me një shembull. Ne zgjedhim "të ngurtën e kuqe në një puçërr" - kjo është "e tërë" jonë. Në të njëjtën kohë, ne shohim se këto gjëra janë me hark dhe ka pa hark. Pas kësaj, ne zgjedhim një pjesë të "tërës" dhe formojmë një grup "me një hark". Kjo është mënyra se si shamanët marrin ushqimin e tyre duke e lidhur teorinë e tyre të grupeve me realitetin.

Tani le të bëjmë një mashtrim të vogël. Le të marrim "të ngurtë me puçërr me hark" dhe t'i bashkojmë këto "të tëra" sipas ngjyrës, duke zgjedhur elementët e kuq. Kemi marrë shumë “të kuqe”. Tani pyetja e fundit: a janë grupet që rezultojnë "me hark" dhe "të kuqe" i njëjti grup apo dy grupe të ndryshme? Vetëm shamanët e dinë përgjigjen. Më saktë, ata vetë nuk dinë asgjë, por siç thonë ata, kështu do të jetë.

Ky shembull i thjeshtë tregon se teoria e grupeve është krejtësisht e padobishme kur bëhet fjalë për realitetin. Cili është sekreti? Ne formuam një grup "të ngurta të kuqe me një puçërr dhe një hark". Formimi u zhvillua në katër njësi të ndryshme matëse: ngjyra (e kuqe), forca (e ngurtë), vrazhdësia (puçrra), dekorimi (me hark). Vetëm një grup njësish matëse na lejon të përshkruajmë në mënyrë adekuate objekte reale në gjuhën e matematikës. Kështu duket.

Shkronja "a" me tregues të ndryshëm tregon njësi të ndryshme matëse. Njësitë matëse me të cilat dallohet "e tërë" në fazën paraprake janë theksuar në kllapa. Njësia matëse me të cilën formohet grupi nxirret nga kllapat. Rreshti i fundit tregon rezultatin përfundimtar - një element i grupit. Siç mund ta shihni, nëse përdorim njësi matëse për të formuar një grup, atëherë rezultati nuk varet nga rendi i veprimeve tona. Dhe kjo është matematikë, dhe jo vallëzimi i shamanëve me dajre. Shamanët mund të arrijnë "intuitivisht" në të njëjtin rezultat, duke argumentuar se është "e qartë", sepse njësitë matëse nuk janë pjesë e arsenalit të tyre "shkencor".

Duke përdorur njësitë matëse, është shumë e lehtë të ndash një grup ose të kombinosh disa grupe në një superset. Le të hedhim një vështrim më të afërt në algjebrën e këtij procesi.

Numri më i thjeshtë është numri natyror. Ato përdoren në jetën e përditshme për numërim objektet, d.m.th. për të llogaritur numrin dhe renditjen e tyre.

Cili është një numër natyror: numrat natyrorë emërtoni numrat që janë përdorur duke numëruar artikujt ose për të treguar numrin serial të çdo artikulli nga të gjithë homogjenët artikuj.

Numrat e plotë- këto janë numra që fillojnë nga një. Ato formohen natyrshëm gjatë numërimit.Për shembull, 1,2,3,4,5... -numrat e parë natyrorë.

Numri më i vogël natyror- një. Nuk ka numër natyror më të madh. Gjatë numërimit të numrit Zero nuk përdoret, pra zero është një numër natyror.

Seritë e numrave natyrorëështë sekuenca e të gjithë numrave natyrorë. Shkrimi i numrave natyrorë:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ...

seri natyraleçdo numër është një më shumë se ai i mëparshmi.

Sa numra ka në serinë natyrore? Seria natyrore është e pafundme; numri natyror më i madh nuk ekziston.

Dhjetor pasi 10 njësi të çdo shifre formojnë 1 njësi të shifrës më të lartë. Pozicionalisht kështu si varet kuptimi i një shifre nga vendi i saj në numër, d.m.th. nga kategoria ku shkruhet.

Klasat e numrave natyrorë.

Çdo numër natyror mund të shkruhet duke përdorur 10 numra arabë:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Për të lexuar numrat natyrorë, ata ndahen, duke filluar nga e djathta, në grupe me nga 3 shifra secili. 3 së pari numrat në të djathtë janë klasa e njësive, 3 të ardhshëm janë klasa e mijërave, pastaj klasat e milionave, miliardave dheetj. Secila nga shifrat e klasës quhet e sajshkarkimi.

Krahasimi i numrave natyrorë.

Nga 2 numra natyrorë, më i vogël është numri që thirret më herët gjatë numërimit. Për shembull, numri 7 më pak 11 (shkruar kështu:7 < 11 ). Kur një numër është më i madh se i dyti, shkruhet kështu:386 > 99 .

Tabela e shifrave dhe klasat e numrave.

Njësia e klasës së parë

Shifra e parë e njësisë

dhjetëshe shifra e dytë

Vendi i tretë qindra

Klasi i dytë mijë

Shifra e parë e njësisë së mijërave

Shifra e dytë me dhjetëra mijëra

Kategoria e tretë qindra mijëra

Klasa e tretë miliona

Shifra e parë e njësisë së milionave

Kategoria e dytë dhjetëra miliona

Kategoria e tretë qindra milionë

Klasa e 4 miliarda

Shifra e parë e njësisë së miliardave

Kategoria e dytë dhjetëra miliardë

Kategoria e tretë qindra miliarda

Numrat nga klasa e 5-të e lart i referohen numra të mëdhenj. Njësitë e klasës së 5-të janë triliona, e 6-ta klasa - kuadrilionë, klasa e 7-të - kuintilionë, klasa e 8-të - sekstilionë, klasa e 9-të - eptilione.

Vetitë themelore të numrave natyrorë.

  • Komutativiteti i mbledhjes . a + b = b + a
  • Komutativiteti i shumëzimit. ab = ba
  • Asociativiteti i shtimit. (a + b) + c = a + (b + c)
  • Asociativiteti i shumëzimit.
  • Shpërndarja e shumëzimit në lidhje me mbledhjen:

Veprimet me numrat natyrorë.

4. Pjesëtimi i numrave natyrorë është veprim i anasjelltë i shumëzimit.

Nëse b ∙ c = a, Kjo

Formulat për ndarje:

a: 1 = a

a: a = 1, a ≠ 0

0: a = 0, a ≠ 0

(A∙ b) : c = (a:c) ∙ b

(A∙ b) : c = (b:c) ∙ a

Shprehjet numerike dhe barazitë numerike.

Një shënim ku numrat janë të lidhur me shenja veprimi është shprehje numerike.

Për shembull, 10∙3+4; (60-2∙5):10.

Regjistrimet ku 2 shprehje numerike janë të kombinuara me një shenjë të barabartë janë barazime numerike. Barazia ka anën e majtë dhe të djathtë.

Rendi i kryerjes së veprimeve aritmetike.

Mbledhja dhe zbritja e numrave janë veprime të shkallës së parë, ndërsa shumëzimi dhe pjesëtimi janë veprime të shkallës së dytë.

Kur një shprehje numerike përbëhet nga veprime të vetëm një shkalle, ato kryhen në mënyrë sekuenciale nga e majta në të djathtë.

Kur shprehjet përbëhen nga veprime vetëm të shkallës së parë dhe të dytë, atëherë veprimet kryhen së pari shkalla e dytë, dhe më pas - veprimet e shkallës së parë.

Kur ka kllapa në një shprehje, veprimet në kllapa kryhen së pari.

Për shembull, 36:(10-4)+3∙5= 36:6+15 = 6+15 = 21.

Historia e numrave natyrorë filloi në kohët primitive. Që nga kohërat e lashta, njerëzit kanë numëruar objekte. Për shembull, në tregti ju duhej një llogari mallrash ose në ndërtim një llogari materialesh. Po, edhe në jetën e përditshme më duhej të numëroja edhe gjërat, ushqimin, bagëtinë. Në fillim numrat përdoreshin vetëm për numërim në jetë, në praktikë, por më vonë me zhvillimin e matematikës u bënë pjesë e shkencës.

Numrat e plotë- këta janë numrat që përdorim gjatë numërimit të objekteve.

Për shembull: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ….

Zero nuk është një numër natyror.

Të gjithë numrat natyrorë, ose le të themi bashkësia e numrave natyrorë, shënohen me simbolin N.

Tabela e numrave natyrorë.

Seri natyrale.

Numrat natyrorë të shkruar në një rresht në formën e rendit rritës seri natyrale ose një seri numrash natyrorë.

Karakteristikat e serisë natyrore:

  • Numri më i vogël natyror është një.
  • Në një seri natyrore, numri tjetër është më i madh se ai i mëparshmi. (1, 2, 3, ...) Tre pika ose elipse vendosen nëse është e pamundur të plotësohet sekuenca e numrave.
  • Seria natyrore nuk ka një numër më të madh, është i pafund.

Shembulli #1:
Shkruani 5 numrat e parë natyrorë.
Zgjidhja:
Numrat natyrorë fillojnë nga një.
1, 2, 3, 4, 5

Shembulli #2:
A është zero një numër natyror?
Përgjigje: jo.

Shembulli #3:
Cili është numri i parë në serinë natyrore?
Përgjigje: Seriali natyral fillon nga një.

Shembulli #4:
Cili është numri i fundit në serinë natyrore? Cili është numri natyror më i madh?
Përgjigje: Seria natyrale fillon me një. Çdo numër tjetër është më i madh se ai i mëparshmi për një, kështu që numri i fundit nuk ekziston. Nuk ka numër më të madh.

Shembulli #5:
Njësia në serinë natyrore ka numri i mëparshëm?
Përgjigje: jo, sepse një është numri i parë në serinë natyrore.

Shembulli #6:
Emërtoni numrin tjetër në serinë natyrore: a)5, b)67, c)9998.
Përgjigje: a)6, b)68, c)9999.

Shembulli #7:
Sa numra ka në serinë natyrore midis numrave: a) 1 dhe 5, b) 14 dhe 19.
Zgjidhja:
a) 1, 2, 3, 4, 5 - tre numra janë midis numrave 1 dhe 5.
b) 14, 15, 16, 17, 18, 19 - katër numra janë midis numrave 14 dhe 19.

Shembulli #8:
Thuaj numrin e mëparshëm pas 11.
Përgjigje: 10.

Shembulli #9:
Cilët numra përdoren gjatë numërimit të objekteve?
Përgjigje: numrat natyrorë.



gabim: Përmbajtja është e mbrojtur!!