5-nél kisebb természetes számok és ellentéteik. Számok

Egész számok- ezek a számok, amelyeket az objektumok számlálásakor használnak. A természetes számok nem tartalmazzák:

  • Negatív számok (például -1, -2, -100).
  • Törtszámok (például 1,1 vagy 6/89).
  • 0. szám.

Írja fel az 5-nél kisebb természetes számokat

Lesz néhány ilyen szám:
1, 2, 3, 4 – ezek mind természetes számok, amelyek kisebbek 5-nél. Nincs több ilyen szám.
Most már csak fel kell írni azokat a számokat, amelyek ellentétesek a talált természetes számokkal. Az adatok ellentétei az ellentétes előjelű számok (más szóval, ezek a számok -1-gyel szorozva). Ahhoz, hogy megtaláljuk az 1, 2, 3, 4 számokkal ellentétes számokat, ezeket a számokat ellentétes előjellel kell felírnunk (szorozzuk meg -1-gyel). Csináljuk:
-1, -2, -3, -4 - ezek mind az 1, 2, 3, 4 számokkal ellentétes számok. Írjuk fel a választ!
Válasz: az 5-nél kisebb természetes számok 1, 2, 3, 4;
a talált számokkal ellentétes számok a -1, -2, -3, -4.

Leegyszerűsítve, ezek egy speciális recept szerint vízben főzött zöldségek. Két kezdeti komponenst (zöldségsaláta és víz) és a végeredményt - a borscsot - veszem figyelembe. Geometriailag téglalapnak tekinthető, amelynek egyik oldala a salátát, a másik oldala pedig a vizet. E két oldal összege a borscsot jelzi. Az ilyen „borscht” téglalap átlója és területe tisztán matematikai fogalmak, és soha nem használják a borscs receptekben.


Hogyan lesz a salátából és a vízből borscs matematikai szempontból? Hogyan válhat két szakasz összege trigonometriává? Ennek megértéséhez lineáris szögfüggvényekre van szükségünk.


A matematikai tankönyvekben nem találsz semmit a lineáris szögfüggvényekről. De nélkülük nem létezhet matematika. A matematika törvényei, akárcsak a természet törvényei, attól függetlenül működnek, hogy tudunk-e létezésükről vagy sem.

A lineáris szögfüggvények összeadási törvények. Nézze meg, hogyan válik az algebra geometriává és a geometriából trigonometriává.

Lehetséges a lineáris szögfüggvények nélkül? Lehetséges, mert a matematikusok továbbra is boldogulnak nélkülük. A matematikusok trükkje az, hogy mindig csak azokról a problémákról beszélnek, amelyeket ők maguk is tudnak, és soha nem beszélnek azokról a problémákról, amelyeket nem tudnak megoldani. Néz. Ha ismerjük az összeadás és az egyik tag eredményét, akkor kivonást használunk a másik tag megkereséséhez. Minden. Nem ismerünk más problémákat, és nem tudjuk, hogyan oldjuk meg őket. Mit tegyünk, ha csak az összeadás eredményét ismerjük, és nem ismerjük mindkét kifejezést? Ebben az esetben az összeadás eredményét lineáris szögfüggvények segítségével két tagra kell bontani. Ezután mi magunk választjuk ki, hogy mi lehet az egyik tag, és a lineáris szögfüggvények megmutatják, hogy mi legyen a második tag, hogy az összeadás eredménye pontosan az legyen, amire szükségünk van. Végtelen számú ilyen kifejezéspár lehet. BAN BEN Mindennapi élet Jól megtehetjük az összeg felbontása nélkül is, nekünk elég a kivonás. De a természet törvényeinek tudományos kutatásában nagyon hasznos lehet egy összeget összetevőire bontani.

Egy másik összeadási törvény, amelyről a matematikusok nem szeretnek beszélni (egy másik trükkjük), megköveteli, hogy a kifejezéseknek azonos mértékegységekkel kell rendelkezniük. A saláta, a víz és a borscs esetében ezek lehetnek súly-, térfogat-, érték- vagy mértékegységek.

Az ábra a matematikai különbségek két szintjét mutatja. Az első szint a számok mezőjében tapasztalható különbségek, amelyeket jeleznek a, b, c. Ezt csinálják a matematikusok. A második szint a mértékegységek mezőjének különbségei, amelyek szögletes zárójelben és betűvel vannak jelezve. U. Ezt csinálják a fizikusok. Megérthetjük a harmadik szintet - különbségeket a leírt tárgyak területén. A különböző objektumok azonos számú azonos mértékegységet tartalmazhatnak. Hogy ez mennyire fontos, azt a borscht trigonometria példáján láthatjuk. Ha ugyanahhoz az egységmegjelöléshez adunk alsó indexeket különböző objektumokhoz, akkor pontosan meg tudjuk mondani, hogy egy adott objektumot milyen matematikai mennyiség ír le, és hogyan változik az idő múlásával vagy a cselekvéseink hatására. Levél W Betűvel fogom kijelölni a vizet S A salátát betűvel fogom kijelölni B- borscs. Így fognak kinézni a borscs lineáris szögfüggvényei.

Ha kivesszük a víz egy részét és a saláta egy részét, akkor ezekből együtt egy adag borscs lesz. Itt azt javaslom, hogy tartson egy kis szünetet a borscstól, és emlékezzen távoli gyermekkorára. Emlékszel, hogyan tanítottak meg minket összerakni nyuszikat és kacsákat? Meg kellett találni, hány állat lesz. Mit tanítottak nekünk akkor? Megtanítottuk a mértékegységeket a számoktól elkülöníteni, és számokat összeadni. Igen, bármelyik szám hozzáadható bármely másik számhoz. Ez egy egyenes út a modern matematika autizmusához - érthetetlenül csináljuk, hogy mit, érthetetlenül miért, és nagyon rosszul értjük, hogy ez hogyan kapcsolódik a valósághoz, a három különböző szint miatt a matematikusok csak eggyel operálnak. Helyesebb lenne megtanulni, hogyan lehet egyik mértékegységről a másikra lépni.

A nyuszik, kacsák, kis állatok darabokban számolhatók. Egy közös egység A különböző objektumok mérése lehetővé teszi, hogy összeadjuk őket. Ez a probléma gyerekeknek szóló változata. Nézzünk egy hasonló problémát felnőtteknél. Mit kapsz, ha nyuszikat és pénzt adsz hozzá? Itt két megoldás lehetséges.

Első lehetőség. Meghatározzuk a nyuszik piaci értékét és hozzáadjuk a rendelkezésre álló pénzösszeghez. Vagyonunk összértékét pénzben kifejezve megkaptuk.

Második lehetőség. A nálunk lévő bankjegyek számához hozzáadhatja a nyuszik számát. Az ingó vagyon mennyiségét darabokban kapjuk meg.

Amint láthatja, ugyanaz az összeadási törvény lehetővé teszi, hogy különböző eredményeket kapjon. Minden attól függ, hogy pontosan mit akarunk tudni.

De térjünk vissza a borscsunkhoz. Most meglátjuk, hogy mikor mi lesz különböző jelentések lineáris szögfüggvények szöge.

A szög nulla. Van salátánk, de nincs víz. Borscsot nem főzhetünk. A borscs mennyisége is nulla. Ez egyáltalán nem jelenti azt, hogy a nulla borscs egyenlő a nulla vízzel. Lehet nulla borscs nulla salátával (derékszög).


Számomra személy szerint ez a fő matematikai bizonyítéka annak, hogy . A nulla hozzáadásakor nem változtatja meg a számot. Ez azért történik, mert maga az összeadás lehetetlen, ha csak egy tag van, és a második tag hiányzik. Ezt tetszés szerint érezheti, de ne feledje – minden nullával végzett matematikai műveletet maguk a matematikusok találták ki, szóval dobja el a logikáját, és ostobán zsúfolja össze a matematikusok által kitalált definíciókat: „nullával osztás lehetetlen”, „bármely szám szorozva nulla egyenlő nullával” , „a lyukasztási ponton túl nulla” és egyéb hülyeségek. Elég egyszer megjegyezni, hogy a nulla nem szám, és soha többé nem lesz kérdés, hogy a nulla természetes szám-e vagy sem, mert egy ilyen kérdés elveszti értelmét: hogyan tekinthető számnak valami, ami nem szám ? Ez olyan, mintha azt kérdeznénk, hogy egy láthatatlan színt milyen színbe kell besorolni. Nullát hozzáadni egy számhoz ugyanaz, mint olyan festékkel festeni, ami nincs ott. Meglegyintettünk egy száraz ecsettel, és azt mondtuk mindenkinek, hogy „festettünk”. De elkalandozom egy kicsit.

A szög nagyobb, mint nulla, de kisebb, mint negyvenöt fok. Sok a salátánk, de kevés a víz. Ennek eredményeként sűrű borscsot kapunk.

A szög negyvenöt fok. Egyforma mennyiségű víz és saláta van. Ez a tökéletes borscs (bocsáss meg, szakácsok, ez csak matematika).

A szög negyvenöt foknál nagyobb, de kilencven foknál kisebb. Sok vízünk van és kevés salátánk. Folyékony borscsot kapsz.

Derékszög. Van vizünk. A salátából már csak emlékek maradnak, hiszen továbbra is attól a vonaltól mérjük a szöget, amely egykor a salátát jelölte. Borscsot nem főzhetünk. A borscs mennyisége nulla. Ebben az esetben kapaszkodj és igyál vizet, amíg van)

Itt. Valami ilyesmi. Elmondhatok itt más történeteket is, amelyek több mint helyénvalóak lennének itt.

Két barátnak volt részesedése egy közös üzletben. Miután megölték egyiküket, minden a másikra került.

A matematika megjelenése bolygónkon.

Mindezeket a történeteket a matematika nyelvén, lineáris szögfüggvények segítségével mesélik el. Máskor megmutatom ezeknek a függvényeknek a valódi helyét a matematika szerkezetében. Addig is térjünk vissza a borscht trigonometriához, és vegyük figyelembe a vetületeket.

2019. október 26. szombat

2019. augusztus 7., szerda

Az erről szóló beszélgetést lezárva egy végtelen halmazt kell figyelembe vennünk. A lényeg az, hogy a „végtelen” fogalma úgy hat a matematikusokra, mint a boa-összehúzó a nyulat. A végtelenség remegő réme megfosztja a matematikusokat józan ész. Íme egy példa:

Az eredeti forrás található. Az alfa a valós számot jelenti. Az egyenlőségjel a fenti kifejezésekben azt jelzi, hogy ha egy számot vagy végtelent adunk a végtelenhez, akkor semmi sem változik, az eredmény ugyanaz a végtelen lesz. Ha a természetes számok végtelen halmazát vesszük példának, akkor a vizsgált példák a következő formában ábrázolhatók:

Annak érdekében, hogy egyértelműen bebizonyítsák, igazuk volt, a matematikusok sok különböző módszert dolgoztak ki. Személy szerint én úgy tekintek ezekre a módszerekre, mint a tamburákkal táncoló sámánokra. Lényegében mindegyik abból adódik, hogy vagy a szobák egy része üresen áll, és új vendégek költöznek be, vagy a látogatók egy részét kidobják a folyosóra, hogy helyet adjanak a vendégeknek (nagyon emberileg). Az ilyen döntésekről alkotott nézetemet a Szőkéről szóló fantáziatörténet formájában mutattam be. Mire épül az érvelésem? A végtelen számú látogató áthelyezése végtelenül sok időt vesz igénybe. Miután az első szobát felszabadítottuk egy vendég számára, az idők végezetéig az egyik látogató mindig végigmegy a folyosón a szobájából a másikba. Persze az időtényezőt hülyén figyelmen kívül lehet hagyni, de ez a „nem bolondoknak írt törvény” kategóriába tartozik. Minden attól függ, hogy mit csinálunk: a valóságot a matematikai elméletekhez igazítjuk, vagy fordítva.

Mi az a „végtelen szálloda”? A végtelen szálloda olyan szálloda, amelyben mindig van bármennyi üres ágy, függetlenül attól, hogy hány szoba van elfoglalva. Ha a végtelen "látogató" folyosón minden szoba foglalt, akkor van egy másik végtelen folyosó "vendég" szobákkal. Végtelen számú ilyen folyosó lesz. Sőt, a „végtelen szállodának” végtelen sok emelete van végtelen számú épületben, végtelen számú bolygón, végtelen számú univerzumban, amelyeket végtelen számú isten hozott létre. A matematikusok nem képesek elhatárolódni a banális hétköznapi problémáktól: mindig csak egy Isten-Allah-Buddha van, csak egy szálloda, csak egy folyosó. A matematikusok tehát próbálnak zsonglőrködni a szállodai szobák sorszámával, meggyőzve minket arról, hogy lehetséges „beleütni a lehetetlent”.

Érvelésem logikáját a természetes számok végtelen halmazának példáján mutatom be. Először meg kell válaszolnia egy nagyon egyszerű kérdést: hány természetes számkészlet van - egy vagy több? Erre a kérdésre nincs helyes válasz, hiszen a számokat mi magunk találtuk ki, a számok nem léteznek a természetben. Igen, a természet remekül tud számolni, de ehhez más matematikai eszközöket használ, amelyeket nem ismerünk. Máskor elmondom, mit gondol a természet. Mivel mi találtuk ki a számokat, mi magunk döntjük el, hogy hány természetes számhalmaz van. Vegyük fontolóra mindkét lehetőséget, ahogy az igazi tudósokhoz illik.

1. lehetőség. „Adjunk nekünk” egyetlen természetes számkészletet, amely nyugodtan hever a polcon. Ezt a készletet levesszük a polcról. Ennyi, más természetes szám nem maradt a polcon, és nincs hova vinni. Ehhez a készlethez nem tudunk hozzáadni egyet, mert már megvan. Mi van, ha nagyon akarod? Nincs mit. A már elvett készletből kivehetünk egyet és visszatehetjük a polcra. Utána levehetünk egyet a polcról, és hozzátehetjük a megmaradthoz. Ennek eredményeként ismét egy végtelen természetes számhalmazt kapunk. Az összes manipulációnkat így írhatja le:

A műveleteket algebrai jelöléssel és halmazelméleti jelöléssel írtam le, a halmaz elemeinek részletes felsorolásával. Az alsó index azt jelzi, hogy egyetlen természetes számkészletünk van. Kiderül, hogy a természetes számok halmaza csak akkor marad változatlan, ha kivonunk belőle egyet, és hozzáadjuk ugyanazt az egységet.

Második lehetőség. Sok különböző végtelen természetes számhalmaz található a polcon. Hangsúlyozom - MÁS, annak ellenére, hogy gyakorlatilag megkülönböztethetetlenek. Vegyünk egy ilyen készletet. Ezután kiveszünk egyet a természetes számok másik halmazából, és hozzáadjuk a már felvett halmazhoz. Akár két természetes számhalmazt is összeadhatunk. Ezt kapjuk:

Az "egy" és a "kettő" alsó indexek azt jelzik, hogy ezek az elemek különböző halmazokhoz tartoztak. Igen, ha egy végtelen halmazhoz adunk egyet, akkor az eredmény is egy végtelen halmaz lesz, de nem lesz ugyanaz, mint az eredeti halmaz. Ha egy végtelen halmazhoz hozzáadunk egy másik végtelen halmazt, az eredmény egy új végtelen halmaz, amely az első két halmaz elemeiből áll.

A természetes számok halmazát ugyanúgy használjuk a számoláshoz, mint a vonalzót a méréshez. Most képzelje el, hogy hozzáadott egy centimétert a vonalzóhoz. Ez egy másik sor lesz, nem egyenlő az eredetivel.

Elfogadhatod vagy nem fogadhatod el az érvelésemet – ez a te dolgod. De ha valaha is matematikai problémákkal találkozik, gondolja át, vajon a matematikusok generációi által kitaposott hamis érvelés útján jár-e. Hiszen a matematika tanulása mindenekelőtt stabil gondolkodási sztereotípiát alakít ki bennünk, és csak azután erősíti szellemi képességeinket (vagy éppen ellenkezőleg, megfoszt bennünket a szabadgondolkodástól).

pozg.ru

2019. augusztus 4., vasárnap

Éppen befejeztem egy cikk utószavát, és láttam ezt a csodálatos szöveget a Wikipédián:

Ezt olvassuk: "... Babilon matematikájának gazdag elméleti alapja nem volt holisztikus jellegű, és különböző technikák halmazává redukálódott, amelyek nélkülözték a közös rendszert és bizonyítékbázist."

Azta! Milyen okosak vagyunk, és milyen jól látjuk mások hiányosságait. Nehéz nekünk ugyanabban a kontextusban szemlélni a modern matematikát? Kissé átfogalmazva a fenti szöveget, én személy szerint a következőket kaptam:

A modern matematika gazdag elméleti alapja nem holisztikus jellegű, és különböző szakaszok halmazára redukálódik, amelyek nélkülözik a közös rendszert és bizonyítékokat.

Nem megyek messzire, hogy megerősítsem szavaimat – nyelve és konvenciói különböznek a matematika sok más ágának nyelvétől és konvencióitól. Ugyanazok a nevek a matematika különböző ágaiban eltérő jelentéssel bírhatnak. Publikációk egész sorát szeretném szentelni a modern matematika legnyilvánvalóbb hibáinak. Hamarosan találkozunk.

2019. augusztus 3. szombat

Hogyan lehet egy halmazt részhalmazokra osztani? Ehhez meg kell adni egy új mértékegységet, amely a kiválasztott halmaz egyes elemeiben jelen van. Nézzünk egy példát.

Legyen nálunk bőven A négy emberből áll. Ez a halmaz az „emberek” alapján van kialakítva. Jelöljük ennek a halmaznak az elemeit betűvel A, a számmal ellátott alsó index minden egyes személy sorozatszámát jelzi ebben a készletben. Vezessünk be egy új mértékegységet a „nem”, és jelöljük betűvel b. Mivel a szexuális jellemzők minden emberben benne vannak, a halmaz minden elemét megsokszorozzuk A nem alapján b. Figyeljük meg, hogy a mi „embereink” csoportja mára „nembeli jellemzőkkel rendelkező emberek” halmazává vált. Ezt követően feloszthatjuk a nemi jellemzőket férfiakra bmés női bw szexuális jellemzők. Most alkalmazhatunk egy matematikai szűrőt: kiválasztunk egyet ezek közül a szexuális jellemzők közül, függetlenül attól, hogy melyik - férfi vagy nő. Ha valakinek megvan, akkor megszorozzuk eggyel, ha nincs ilyen előjel, akkor nullával. És akkor a szokásos iskolai matematikát használjuk. Nézd, mi történt.

Szorzás, kicsinyítés és átrendezés után két részhalmazt kaptunk: a férfiak részhalmazát Bmés a nők egy részhalmaza Bw. A matematikusok megközelítőleg ugyanígy érvelnek, amikor a halmazelméletet alkalmazzák a gyakorlatban. De nem a részleteket árulják el, hanem a végeredményt – „sok ember a férfiak egy részéből és a nők egy részéből áll.” Természetesen felmerülhet a kérdés: mennyire helyesen alkalmazták a matematikát a fent vázolt transzformációkban? Biztosíthatom Önöket, hogy lényegében mindent helyesen csináltak, elég, ha ismerjük az aritmetika, a Boole-algebra és a matematika egyéb ágainak matematikai alapjait. Ami? Máskor mesélek erről.

Ami a szuperhalmazokat illeti, két halmazt összevonhat egy szuperszettbe, ha kiválasztja a két halmaz elemeiben található mértékegységet.

Mint látható, a mértékegységek és a közönséges matematika a halmazelméletet a múlt emlékévé teszi. Annak a jele, hogy nincs minden rendben a halmazelmélettel, az, hogy a matematikusok saját nyelvezetet és jelölést találtak ki a halmazelmélethez. A matematikusok úgy viselkedtek, mint egykor a sámánok. Csak a sámánok tudják, hogyan kell „helyesen” alkalmazni „tudásukat”. Megtanítják nekünk ezt a „tudást”.

Befejezésül szeretném megmutatni, hogyan manipulálják a matematikusok .

2019. január 7., hétfő

A Kr.e. V. században ókori görög filozófus Eleai Zénón megfogalmazta híres apóriáit, amelyek közül a leghíresebb az „Achilles és a teknős” apóriája. Így hangzik:

Tegyük fel, hogy Akhilleusz tízszer gyorsabban fut, mint a teknősbéka, és ezer lépéssel mögötte van. Amíg Akhilleusz lefutja ezt a távot, a teknősbéka száz lépést kúszik ugyanabba az irányba. Amikor Akhilleusz száz lépést fut, a teknősbéka újabb tíz lépést kúszik, és így tovább. A folyamat a végtelenségig folytatódik, Akhilleusz soha nem éri utol a teknősbékát.

Ez az érvelés logikus megrázkódtatássá vált minden következő generáció számára. Arisztotelész, Diogenész, Kant, Hegel, Hilbert... Valamennyien így vagy úgy tekintették Zénón apóriáját. A sokk olyan erős volt, hogy " ... a viták a mai napig folynak, a tudományos közösség még nem tudott közös véleményre jutni a paradoxonok lényegéről ... matematikai elemzés, halmazelmélet, új fizikai és filozófiai megközelítések vontak be a kérdés vizsgálatába ; egyik sem lett általánosan elfogadott megoldás a problémára..."[Wikipedia, "Zeno's Aporia". Mindenki megérti, hogy becsapják, de senki sem érti, miből áll a megtévesztés.

Matematikai szempontból Zénó aporiájában egyértelműen bemutatta a mennyiségből a -ba való átmenetet. Ez az átmenet állandó helyett alkalmazást jelent. Ha jól értem, a változó mértékegységek használatára szolgáló matematikai apparátust vagy még nem fejlesztették ki, vagy nem alkalmazták Zénó apóriájára. A megszokott logikánk alkalmazása csapdába vezet bennünket. Mi a gondolkodás tehetetlensége miatt állandó időegységeket alkalmazunk a reciprok értékre. Fizikai szempontból ez úgy tűnik, mintha az idő lelassulna, amíg teljesen meg nem áll abban a pillanatban, amikor Akhilleusz utoléri a teknőst. Ha megáll az idő, Akhilleusz már nem tudja lehagyni a teknősbékát.

Ha megfordítjuk a megszokott logikánkat, minden a helyére kerül. Akhilleusz állandó sebességgel fut. Útjának minden következő szakasza tízszer rövidebb, mint az előző. Ennek megfelelően a leküzdésére fordított idő tízszer kevesebb, mint az előzőnél. Ha ebben a helyzetben alkalmazzuk a „végtelen” fogalmát, akkor helyes lenne azt mondani, hogy „Achilles végtelenül gyorsan utoléri a teknőst”.

Hogyan lehet elkerülni ezt a logikai csapdát? Maradjon állandó időegységben, és ne váltson át reciprok mértékegységekre. Zénón nyelvén ez így néz ki:

Amíg Akhilleusz ezer lépést fut, addig a teknősbéka száz lépést kúszik ugyanabba az irányba. Az elsővel megegyező következő időintervallumban Akhilleusz újabb ezer lépést fut, a teknősbéka pedig száz lépést kúszik. Most Akhilleusz nyolcszáz lépéssel megelőzi a teknősbékát.

Ez a megközelítés adekvát módon írja le a valóságot minden logikai paradoxon nélkül. De ez nem teljes megoldás a problémára. Einstein kijelentése a fénysebesség ellenállhatatlanságáról nagyon hasonlít Zénón „Achilles és a teknős” című apóriájához. Ezt a problémát még tanulmányoznunk, újragondolnunk és megoldanunk kell. A megoldást pedig nem végtelenül nagy számokban, hanem mértékegységekben kell keresni.

Zénó másik érdekes apóriája egy repülő nyílról mesél:

A repülő nyíl mozdulatlan, hiszen az idő minden pillanatában nyugalomban van, és mivel minden pillanatban nyugalomban van, mindig nyugalomban van.

Ebben az apóriában a logikai paradoxont ​​nagyon egyszerűen leküzdjük - elég tisztázni, hogy minden időpillanatban egy repülő nyíl nyugalomban van a tér különböző pontjain, ami valójában mozgás. Itt még egy szempontot kell megjegyezni. Egy úton lévő autóról készült fényképből lehetetlen meghatározni sem a mozgás tényét, sem a távolságot. Annak megállapításához, hogy egy autó mozog-e, két fényképre van szüksége, amelyek ugyanarról a pontról készültek, különböző időpontokban, de nem tudja meghatározni a távolságot tőlük. Az autótól való távolság meghatározásához két fényképre van szükség, amelyek a tér különböző pontjairól készültek egy időben, de ezekből nem lehet meghatározni a mozgás tényét (természetesen további adatokra van szükség a számításokhoz, a trigonometria segít ). Amire külön szeretném felhívni a figyelmet, az az, hogy két időpont és két térpont különböző dolog, amit nem szabad összekeverni, mert más-más kutatási lehetőséget biztosítanak.
Egy példával mutatom be a folyamatot. Kiválasztjuk a „vörös szilárd pattanást” - ez a mi „egészünk”. Ugyanakkor azt látjuk, hogy ezek a dolgok íjjal vannak, és vannak íj nélküli dolgok. Ezután kiválasztjuk az „egész” egy részét, és egy készletet alkotunk „egy íjjal”. A sámánok így jutnak táplálékhoz azáltal, hogy halmazelméletüket a valósághoz kötik.

Most csináljunk egy kis trükköt. Vegyük a „masnis pattanásos szilárd”-ot, és kombináljuk ezeket az „egészeket” szín szerint, kiválasztva a piros elemeket. Sok "pirost" kaptunk. Most az utolsó kérdés: a kapott „íjjal” és „piros” halmazok ugyanazok, vagy két különböző halmaz? Csak a sámánok tudják a választ. Pontosabban ők maguk nem tudnak semmit, de ahogy mondják, úgy lesz.

Ez az egyszerű példa azt mutatja, hogy a halmazelmélet teljesen haszontalan, ha a valóságról van szó. mi a titok? Készítettünk egy készletet "piros szilárd pattanással és masnival". A formálás négy különböző mértékegységben zajlott: szín (piros), szilárdság (szilárd), érdesség (pattanás), díszítés (masnival). Csak a mértékegységek halmaza teszi lehetővé a valós tárgyak megfelelő leírását a matematika nyelvén. Így néz ki.

Az "a" betű különböző indexekkel különböző mértékegységeket jelöl. Zárójelben vannak kiemelve azok a mértékegységek, amelyek alapján az „egész” megkülönböztethető az előzetes szakaszban. A zárójelekből kivesszük azt a mértékegységet, amellyel a halmaz létrejön. Az utolsó sor a végeredményt mutatja - a készlet egy elemét. Mint látható, ha mértékegységeket használunk egy halmaz kialakításához, akkor az eredmény nem függ cselekvéseink sorrendjétől. És ez a matematika, és nem a sámánok tamburákkal való tánca. A sámánok „intuitív módon” ugyanerre az eredményre juthatnak, azzal érvelve, hogy ez „nyilvánvaló”, mert a mértékegységek nem részei „tudományos” arzenáljuknak.

A mértékegységek használatával nagyon egyszerű egy készletet felosztani vagy több készletet egyetlen szuperszettbe kombinálni. Nézzük meg közelebbről ennek a folyamatnak az algebráját.

A legegyszerűbb szám az természetes szám. A mindennapi életben számolásra használják tárgyak, azaz. számuk és sorrendjük kiszámításához.

Mi a természetes szám: természetes számok nevezd meg a megszokott számokat tételek számlálása vagy bármely tétel sorszámának feltüntetése az összes homogénből tételeket.

Egész számok- ezek egytől kezdődő számok. Számláláskor természetes módon keletkeznek.Például 1,2,3,4,5... -első természetes számok.

A legkisebb természetes szám- egy. Nincs legnagyobb természetes szám. A szám számolásánál A nullát nem használjuk, így a nulla természetes szám.

Természetes számsorok az összes természetes szám sorozata. Természetes számok írása:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ...

BAN BEN természetes sorozat minden szám eggyel több, mint az előző.

Hány szám van a természetes sorozatban? A természetes sorozat végtelen, a legnagyobb természetes szám nem létezik.

Tizedes, mivel bármely számjegy 10 egysége a legmagasabb számjegy 1 egységét alkotja. Pozicionálisan úgy hogyan függ egy számjegy jelentése a számban elfoglalt helyétől, azaz. abból a kategóriából, ahol írva van.

Természetes számok osztályai.

Bármely természetes szám felírható 10 arab számmal:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

A természetes számok olvasásához jobbról kezdődően 3 számjegyű csoportokra osztjuk őket. 3 először a jobb oldali számok az egységek osztályai, a következő 3 az ezres osztályok, majd a milliók, milliárdok ésstb. Az osztály minden számjegyét annak nevezzükkisülés.

Természetes számok összehasonlítása.

2 természetes szám közül a kisebb az a szám, amelyet korábban hívunk a számlálás során. Például, szám 7 Kevésbé 11 (így írva:7 < 11 ). Ha egy szám nagyobb, mint a második, akkor a következőképpen írjuk:386 > 99 .

Számjegyek és számosztályok táblázata.

1. osztályú egység

Az egység 1. számjegye

2. számjegy tízesek

3. hely százas

2. osztályú ezer

Az ezres egység 1. számjegye

2. számjegy tízezrek

3. kategória százezres

3. osztályú milliók

A milliós egység 1. számjegye

2. kategória tízmilliós

3. kategória százmilliók

4. osztályú milliárdok

A milliárdok egységének 1. számjegye

2. kategória tízmilliárdok

3. kategória százmilliárdok

Az 5. osztálytól és afölötti számok a nagy számok. Az 5. osztály egységei billiók, a 6. osztály - kvadrilliók, 7. osztály - ötmilliárd, 8. osztály - szexmilliárd, 9. osztály - eptilionok.

A természetes számok alapvető tulajdonságai.

  • Összeadás kommutativitása . a + b = b + a
  • A szorzás kommutativitása. ab = ba
  • Az összeadás asszociativitása. (a + b) + c = a + (b + c)
  • A szorzás asszociativitása.
  • A szorzás eloszlása ​​az összeadáshoz viszonyítva:

Műveletek természetes számokkal.

4. A természetes számok osztása a szorzás fordított művelete.

Ha b ∙ c = a, Azt

Felosztási képletek:

a: 1 = a

a: a = 1, a ≠ 0

0: a = 0, a ≠ 0

(A∙ b) : c = (a:c) ∙ b

(A∙ b) : c = (b:c) ∙ a

Numerikus kifejezések és numerikus egyenlőségek.

Az a jelölés, ahol a számokat cselekvésjelek kötik össze numerikus kifejezés.

Például 10∙3+4; (60-2∙5):10.

Azok a rekordok, ahol 2 numerikus kifejezés egyenlőségjellel van kombinálva számszerű egyenlőségeket. Az egyenlőségnek bal és jobb oldala van.

Az aritmetikai műveletek végrehajtásának sorrendje.

A számok összeadása és kivonása elsőfokú, míg a szorzás és osztás másodfokú műveletek.

Ha egy numerikus kifejezés csak egyfokú műveletekből áll, akkor azokat egymás után hajtják végre balról jobbra.

Ha a kifejezések csak első és másodfokú cselekvésekből állnak, akkor először a cselekvések kerülnek végrehajtásra második fokú, majd - az első fokú akciók.

Ha egy kifejezésben zárójelek vannak, akkor először a zárójelben lévő műveletek kerülnek végrehajtásra.

Például 36:(10-4)+3∙5= 36:6+15 = 6+15 = 21.

A természetes számok története a kezdetleges időkben kezdődött.Ősidők óta az emberek számolják a tárgyakat. Például a kereskedelemben áruelszámolásra, az építőiparban pedig az anyagszámlára volt szüksége. Igen, a hétköznapokban is számolnom kellett dolgokat, élelmet, állatállományt. A számokat eleinte csak számolásra használták az életben, a gyakorlatban, de később, a matematika fejlődésével a tudomány részévé váltak.

Egész számok- ezeket a számokat használjuk az objektumok számlálásakor.

Például: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ….

A nulla nem természetes szám.

Minden természetes számot, vagy mondjuk a természetes számok halmazát N jellel jelöljük.

Természetes számok táblázata.

Természetes sorozat.

Egy sorba írt természetes számok növekvő sorrendben természetes sorozat vagy természetes számok sorozata.

A természetes sorozat tulajdonságai:

  • A legkisebb természetes szám egy.
  • A természetes sorozatban a következő szám egyenként nagyobb, mint az előző. (1, 2, 3, ...) Három pont vagy ellipszis kerül elhelyezésre, ha a számsort lehetetlen befejezni.
  • A természetes sorozatnak nincs legnagyobb száma, hanem végtelen.

1. példa:
Írd fel az első 5 természetes számot!
Megoldás:
A természetes számok egytől indulnak.
1, 2, 3, 4, 5

2. példa:
A nulla természetes szám?
Válasz: nem.

3. példa:
Mi a természetes sorozat első száma?
Válasz: A természetes sorozat egytől indul.

4. példa:
Mi az utolsó szám a természetes sorozatban? Mi a legnagyobb természetes szám?
Válasz: A természetes sorozat eggyel kezdődik. Minden következő szám egyenként nagyobb, mint az előző, így az utolsó szám nem létezik. Nincs legnagyobb szám.

5. példa:
A természetes sorozat egysége rendelkezik előző szám?
Válasz: nem, mert az egyik a természetes sorozat első száma.

6. példa:
Nevezd meg a természetes sorozat következő számát: a)5, b)67, c)9998!
Válasz: a)6, b)68, c)9999.

7. példa:
Hány szám van a természetes sorozatban a következő számok között: a) 1 és 5, b) 14 és 19.
Megoldás:
a) 1, 2, 3, 4, 5 – három szám van az 1 és 5 között.
b) 14, 15, 16, 17, 18, 19 – négy szám van a 14 és 19 között.

8. példa:
Mondja ki az előző számot 11 után.
Válasz: 10.

9. példa:
Milyen számokat használunk az objektumok számlálásakor?
Válasz: természetes számok.



hiba: A tartalom védett!!